Efficient Reduced-Rank DOA Estimation Algorithms Using Alternating Low-Rank Decompositions

نویسندگان

  • Yunlong Cai
  • Linzheng Qiu
  • Rodrigo C. de Lamare
  • Minjian Zhao
چکیده

In this work, we propose an alternating low-rank decomposition (ALRD) approach and novel subspace algorithms for directionof-arrival (DOA) estimation. In the ALRD scheme, the decomposition matrix for rank reduction is composed of a set of basis vectors. A low-rank auxiliary parameter vector is then employed to compute the output power spectrum. Alternating optimization strategies based on recursive least squares (RLS), denoted as ALRD-RLS and modified ALRD-RLS (MARLD-RLS), are devised to compute the basis vectors and the auxiliary parameter vector. Simulations for large sensor arrays with both uncorrelated and correlated sources are presented, showing that the proposed algorithms are superior to existing techniques. Index Terms DOA estimation, low-rank decomposition, parameter estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Reduced-Rank Decompositions Using Switching and Adaptive Algorithms for Space-Time Adaptive Processing

This work presents generalized low-rank signal decompositions with the aid of switching techniques and adaptive algorithms, which do not require eigen-decompositions, for space-time adaptive processing. A generalized scheme is proposed to compute low-rank signal decompositions by imposing suitable constraints on the filtering and by performing iterations between the computed subspace and the lo...

متن کامل

Distributed Low-Rank Adaptive Algorithms Based on Alternating Optimization and Applications

This paper presents a novel distributed low-rank scheme and adaptive algorithms for distributed estimation over wireless networks. The proposed distributed scheme is based on a transformation that performs dimensionality reduction at each agent of the network followed by transmission of a reduced set of parameters to other agents and reduced-dimension parameter estimation. Distributed low-rank ...

متن کامل

Adaptive Reduced-Rank Equalization Algorithms Based on Alternating Optimization Design Techniques for Multi-Antenna Systems

This paper presents a novel adaptive reduced-rank multi-input multi-output (MIMO) equalization scheme and algorithms based on alternating optimization design techniques for MIMO spatial multiplexing systems. The proposed reduced-rank equalization structure consists of a joint iterative optimization of two equalization stages, namely, a transformation matrix that performs dimensionality reductio...

متن کامل

Learning Mixtures of Discrete Product Distributions using Spectral Decompositions

We study the problem of learning a distribution from samples, when the underlying distribution is a mixture of product distributions over discrete domains. This problem is motivated by several practical applications such as crowdsourcing, recommendation systems, and learning Boolean functions. The existing solutions either heavily rely on the fact that the number of mixtures is finite or have s...

متن کامل

Array Signal Processing Algorithms for Beamforming and Direction Finding

Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1604.04321  شماره 

صفحات  -

تاریخ انتشار 2016